Weather and inoculum factors associated with kiwifruit bud rot

M. Shahjahan Kabir1,*, Bethan E. Parry1, Joy L. Tyson2, Michael A. Manning2 and Robert M. Beresford2

1The New Zealand Institute for Plant & Food Research Ltd, 412 No 1 Road, RD2 Te Puke 3182, New Zealand
2The New Zealand Institute for Plant & Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
*Corresponding author: shahjahan.kabir@plantandfood.co.nz

Pseudomonas syringae pv. actinidiae biovar 3 (Psa) causes kiwifruit bacterial canker and also bud rot, which destroys developing flower buds and can become a severe problem, particularly in green-fleshed cultivars. The effects of weather and inoculum factors on bud-rot development were investigated. Experiments were conducted on two green kiwifruit cultivars: Actinidia chinensis var. delicosa 'Hayward' and A. chinensis var. chinensis × A. chinensis var. delicosa 'Zesh004' (known as Green14), at four sites for two consecutive years. Temperature and rainfall were recorded from bud burst to flowering and bud-rot incidence was monitored from approximately two weeks after flower bud appearance until flowering. Correlations between weather parameters and final bud-rot incidence, and between initial bud-rot and final bud-rot incidence were investigated. There was no significant association between temperature and final bud-rot incidence, but total rainfall and number of days of rain were positively correlated with final bud-rot incidence. Initial bud-rot incidence showed the strongest correlation with final bud-rot incidence and appeared to be the main factor that contributed to bud-rot.

Propidium monoazide combined with qPCR to differentiate live and dead conidia of Neofabraea actinidiae

Lucia Ramos1,*, I.P. Shamini Pushparajah1, M. Shahjahan Kabir1, Bethan E. Parry1 and Kerry R. Everett1

1 The New Zealand Institute for Plant & Food Research Ltd, Private Bag 92169, Auckland 1142, New Zealand
2 The New Zealand Institute for Plant & Food Research Ltd, 412 No 1 Road, RD2 Te Puke 3182, New Zealand
*Corresponding author: Lucia.Ramos@plantandfood.co.nz

Neofabraea actinidiae can occasionally cause post-harvest rot in kiwifruit. Quantitative polymerase chain reaction (qPCR) analysis represents a feasible and accurate option for identifying and quantifying this rot but is limited because qPCR results do not differentiate live and dead conidia. Propidium monoazide (PMA) is a photoreactive dye that penetrates into the damaged cell-wall membranes of dead conidia binding to the DNA and thus suppressing its amplification by qPCR. A commercial kit containing PMA was trialled for differentiating between live and dead N. actinidiae conidia. The most suitable conditions were 1 μM PMA with 10 min light emitting diode (LED) exposure, and could clearly distinguish high concentrations of live from similar concentrations of dead conidia when tested separately and as a mixture. Low concentrations of live N. actinidiae conidia could be distinguished from dead ones when tested separately, but not as a mixture. Additional work is needed to optimise the effectiveness of the PMA binding and apply this concept in the orchard.